A greedy randomized adaptive search procedure applied to the clustering problem as an initialization process using K-Means as a local search procedure
نویسندگان
چکیده
We present a new approach for Cluster Analysis based on a Greedy Randomized Adaptive Search Procedure (GRASP), with the objective of overcoming the convergence to a local solution. It uses a probabilistic greedy Kaufman initialization to get initial solutions and K-Means as a local search algorithm. The approach is a new initialization one for K-Means. Hence, we compare it with some typical initialization methods: Random, Forgy, Macqueen and Kaufman. Our empirical results suggest that the hybrid GRASP – K-Means with probabilistic greedy Kaufman initialization performs better than the other methods with improved results. The new approach obtains high quality solutions for eight benchmark problems.
منابع مشابه
Using Greedy Randomize Adaptive Search Procedure for solve the Quadratic Assignment Problem
Greedy randomize adaptive search procedure is one of the repetitive meta-heuristic to solve combinatorial problem. In this procedure, each repetition includes two, construction and local search phase. A high quality feasible primitive answer is made in construction phase and is improved in the second phase with local search. The best answer result of iterations, declare as output. In this stu...
متن کاملFitting the Three-parameter Weibull Distribution by using Greedy Randomized Adaptive Search Procedure
The Weibull distribution is widely employed in several areas of engineering because it is an extremely flexible distribution with different shapes. Moreover, it can include characteristics of several other distributions. However, successful usage of Weibull distribution depends on estimation accuracy for three parameters of scale, shape and location. This issue shifts the attentions to the requ...
متن کاملDECSAI A Greedy Randomized Adaptive Search Procedure for the Clustering Problem
The aim of this paper is to present a new proposal for Cluster Analysis based on a Greedy Randomized Adaptive Search Procedure (GRASP), with the objective of overcoming the convergence to a local solution. It uses a probabilistic greedy Kaufman initialization method for getting initial solutions and the K-Means algorithm as a local search algorithm. The new proposal will become a new initializa...
متن کاملA GRASP Algorithm for Clustering
We present a new approach for Cluster Analysis based on a Greedy Randomized Adaptive Search Procedure (GRASP), with the objective of overcoming the convergence to a local solution. It uses a probabilistic greedy Kaufman initialization for getting initial solutions and K-Means algorithm as a local search algorithm. We compare it with some typical initialization methods: Random, Forgy, Macqueen a...
متن کاملA hybrid metaheuristic using fuzzy greedy search operator for combinatorial optimization with specific reference to the travelling salesman problem
We describe a hybrid meta-heuristic algorithm for combinatorial optimization problems with a specific reference to the travelling salesman problem (TSP). The method is a combination of a genetic algorithm (GA) and greedy randomized adaptive search procedure (GRASP). A new adaptive fuzzy a greedy search operator is developed for this hybrid method. Computational experiments using a wide range of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Intelligent and Fuzzy Systems
دوره 12 شماره
صفحات -
تاریخ انتشار 2002